Received: 13 July 2022

Revised: 28 September 2022

W) Check for updates

Accepted: 8 November 2022

DOI: 10.1002/mp.16108

RESEARCH ARTICLE

MEDICAL PHYSICS

Fully automated cardiac MRI segmentation using dilated

residual network

Faizan Ahmad'-2

Soft Robotics Research Center, Shenzhen
Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen, China

2University of Chinese Academy of Sciences,
Beijing, China

3Medical Robotics and Minimally Invasive
Surgical Devices, Shenzhen Institute of
Advanced Technology, Chinese Academy of
Sciences Shenzhen, China

4CAS Key Laboratory of Human-Machine
Intelligence-Synergy Systems, Shenzhen
Institute of Advanced Technology, Shenzhen,
China

Correspondence

Zeyang Xia, Soft Robotics Research Center,
Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen
518055, China

Email: zy.xia@siat.ac.cn

Funding information

National Natural Science Foundation of
China, Grant/Award Numbers: U2013205,
62073309, 6210021302; Chinese Academy of
Sciences Youth Innovation Promotion
Association Excellent Member Program,
Grant/Award Number: Y201968; Guangdong
Basic and Applied Basic Research
Foundation, Grant/Award Number:
2022B1515020042; Shenzhen Science and
Technology Program, Grant/Award Number:
JCYJ20220818101603008

| Wenguo Hou'

| Jing Xiong® | Zeyang Xia'*

Abstract

Purpose: Cardiac ventricle segmentation from cine magnetic resonance imag-
ing (CMRI) is a recognized modality for the noninvasive assessment of
cardiovascular pathologies. Deep learning based algorithms achieved state-of -
the-art result performance from CMRI cardiac ventricle segmentation. However,
most approaches received less attention at the bottom layer of UNet, where
main features are lost due to pixel degradation. To increase performance, it
is important to handle the bottleneck layer of UNet properly. Considering this
problem, we enhanced the performance of main features at the bottom layer of
network.

Method: We developed a fully automatic pipeline for segmenting the right
ventricle (RV), myocardium (MYO), and left ventricle (LV) by incorporating short-
axis CMRI sequence images. We propose a dilated residual network (DRN) to
capture the features at full resolution in the bottleneck of UNet. Thus, it signifi-
cantly increases spatial and temporal information and maintains the localization
accuracy. A data-augmentation technique is employed to avoid overfitting and
class imbalance problems. Finally, output from each expanding path is added
pixel-wise to improve the training response.

Results: We used and evaluated our proposed method on automatic cardiac
diagnosis challenge (ACDC). The test set consists of 50 patient records. The
overall dice similarity coefficient (DSC) we achieved for our model is 0.924 +
0.03,0.907 + 0.01,and 0.949 + 0.05 for RV, MYO, and LV, respectively. Similarly,
we obtained hausdorff distance (HD) scores of 10.09 + 0.01,7.25 + 0.05, and
6.86 + 0.02 mm for RV, MYO, and LV, respectively. The results show superior
performance and outperformed state-of-the-art methods in terms of accuracy
and reached expert-level segmentation. Consequently, the overall DSC and HD
result improved by 1.0% and 1.5%, respectively.

Conclusion: We designed a dilated residual UNet (DRN) for cardiac ventricle
segmentation using short-axis CMRI. Our method has the advantage of restor-
ing and capturing spatial and temporal information by expanding the receptive
field without degrading the image main features in the bottleneck of UNet. Our
method is highly accurate and quick, taking 0.28 s on average to process 2D
MR images. Also, the network was designed to work on predictions of individual
MR images to segment the ventricular region, for which our model outperforms
many state-of-the-art methods.
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CARDIAC VENTRICULAR SEGMENTATION

1 | INTRODUCTION

Automated cardiac ventricle segmentation is one of
the challenging tasks in medical image processing.
A properly performed segmentation can save physi-
cians considerable time by enabling them to segment
regions of interest (ROIs) manually. Moreover, this pro-
cess eliminates the ambiguities associated with human
intervention when multiple experts annotate the same
region. Therefore, this would be an invaluable step
toward automatic disease diagnosis. Specifically, the
human heart is susceptible to a range of cardiovascular
conditions, which continue to be a significant cause of
death worldwide, if not the leading cause.

Cine magnetic resonance imaging (CMRI) is typically
acquired for the assessment of cardiovascular health
during the relaxing (diastole) and contracting (systole)
phase of a cardiac cycle. It is necessary to calcu-
late metrics such as volume, ejection fraction (EF), and
strain’, as well as to investigate local myocardial wall
motion irregularities in order to assess cardiac health.
Patients with cardiovascular disease are more likely to
experience arrhythmias, difficulty holding their breath,
or difficulty remaining still during the acquisition of a
CMRI. This results in images from MRI scanners poten-
tially containing a variety of image artifacts?, making
it difficult to assess their quality. Clinicians may draw
wrong conclusions from imaging data if the data is seg-
mented incorrectly® The process of manual delineation
is time-consuming, tedious, and highly unpredictable.
Therefore, a semi-automated or fully automatic seg-
mentation pipeline is required to identify the outer wall
(epicardium) and inner wall (endocardium) indices.

Deep convolutional neural networks (DCNNs) have
achieved state-of-the-art performance in biomedical
image segmentation over the past decade. Specifically,
the UNet architecture* is task-independent and has
been applied to various biomedical segmentation tasks
with some minor or substantive modifications. A DCNN
has been shown to provide better segmentation of the
right and left ventricles and the myocardium than the
more conventional methods of computer vision.® The U-
net architecture has led to the development of the most
efficient algorithms for ventricular segmentation.

Recently, semi-automatic or fully automatic tech-
niques have gained considerable attention in research
for cardiac CMRI segmentation® Generally, these
approaches can be categorized into two broad cate-
gories based on the prior knowledge used for seg-
mentation: weak or no prior approaches and strong
prior approaches. The first group segments the heart
structure entirely based on image content or weak
assumptions, for example, anatomical details. This work
includes image-based methods, such as threshold’,and
deformable models, which uses active contour or level-
set methods®'° The second group worked on strong
prior knowledge and the geometrical structures of the
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heart. The method includes deformable models with
a shape prior'", atlas-based techniques'?, and active
shape and appearance models.'®> Despite significant
progress in automatic segmentation of multi-structure
from CMR, this task remains challenging due to low con-
trast between adjacent slices, inherent subject variance,
and distorted pixel density.

Numerous deep learning approaches for cardiac
segmentation have been proposed recently and have
shown superior performance compared to traditional
techniques. Tran et al.'* used short-axis MR images to
segment LV and RV by deploying a deep fully convolu-
tional network (FCN) architecture for pixel-wise labelling
from CMRI. Oktay et al.'®, utilized the image super-
resolution (SR) method for segmenting and classifying
cardiac pathologies using residual convolution neural
networks (CNNs). Bai et al.'® used FCN to segment
the LV and RV using short-axis CMRI, while the left
atrium (LA) and right atrium (RA) were segmented using
long-axis CMRI. These approaches use pre-processed
MRI data slice by slice before applying them to a
two-dimensional (2D) CNNs. Ma et al.'” developed an
iterative multi-path fully convolution network (IMFCN)
that combines the advantages of two-dimensional (2D)
and three-dimensional (3D) techniques for automated
cardiac segmentation. Through the use of a multi-path
late fusion strategy and arous spatial pyramid pooling
(ASPP) module, the network can effectively leverage
spatial context information in 2D network.

When comparing 3D CNN methods, 2D methods have
the advantage of having more training data, less mem-
ory usage, and less training time.'’®2° However, 3D
methods consider 3D-context information, and the con-
sistency can be maintained between segmentations of
different slices, implying that 3D methods are more
accurate and consistent than 2D methods. Nevertheless,
cardiac MRI has a low through-plane resolution which
limits 3D methods, such as image size reduction and
overfitting. Also, 3D methods can restrict the segmen-
tation performance to some extent.'®2! For example,
previous work?>~?4 on Automated Cardiac Diagnosis
challenge (ACDC) dataset?® showed that the 3D mod-
els did not perform well as compared to 2D models in
terms of performance improvement.

In 2D architecture, there have been several meth-
ods for enhancing spatial context. For instance, deep
networks can be trained with multiple viewpoints to
obtain multi-view information. Then this information is
combined to produce segmentation results?5-2% using
FCN to incorporate the entire stack of 2D slices to
enhance the outcome.?® MRI of the heart provides low-
resolution through-plane and high-resolution in-plane.
Therefore, correlations within slices are relatively low,
except between adjacent slices. In Patravali’s study??,
adjacent slice contextual information can directly be
achieved using a volumetric segmentation strategy that
involves by grouping them as input to the channels
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and generating predictions of the targeted slice. This
approach treats adjacent and target slices equally
while neglecting the previously predicted segmentation
information. This is in contrast to the human expert’s
workflow. When performing manual segmentation slice
by slice, clinicians concentrate on the current slice while
comparing it with adjacent and previous slices for seg-
mentation results to maintain spatial consistency. Dangi
et al.'” described shape and boundary constraints for
FCN-based architecture for segmenting the heart cham-
bers from CMRI to obtain distance maps prediction at
the bottleneck of FCN. The distance map regularization
improves segmentation performance for both binary and
multi-class predictions.

In the past few years, cardiac segmentation from cine-
MRI has been achieved using a variety of CNN methods
utilizing deep learning. In some proposals, CNNs are
exclusively used for segmentation, whereas others rec-
ommend CNNs as a part of a multistage network. The
CNNs outputs in the latter case are interpreted as
raw segmentations that can be further refined through
other well-known methods. Avendi et al3? utilized a
deep learning approach that obtained segmentation
tasks from the ground truth labels and applied them
to CNNs to determine the LV chamber’s features. After
the left ventricle’s shape was inferred using a stacked
auto-encoder, the shape was integrated into deformable
models in order to improve the accuracy and robustness
of short-axis cardiac MRI.

A study has proposed a method of automated left ven-
tricle segmentation that combines deep learning with
level set techniques>' The level set method based on
shape and appearance is limited in its ability to rep-
resent visual variation. Deep learning techniques can
be used to model such variations by utilizing small
amounts of labeled training data, but these data must be
regularized in order to achieve suitable generalization.
Another method was used to improve the accuracy of
LV segmentation using cost minimization and dynamic
programming that combines deep learning and a region-
constrained method.3? Additionally, multi-scale residual
DenseNets®3 and multiple bottleneck layers are used
as part of the FCN-based method for cardiac ventricle
segmentation®* to enhance overall accuracy.

In this paper, we present a fully automated segmen-
tation approach for cardiac ventricles to address the
limitations of the bottom layer of UNet, such as the
loss of spatial and temporal information and the diffi-
culty of handling ventricles of different sizes. The main
contribution of the study as follows:

1. First,to increase the spatial dimension, we design the
dilated residual network (DRN) block and replace it at
the bottom layer of the original UNet. Thus, it signifi-
cantly enhances the spatial and temporal information
while maintaining the main features in the image dur-
ing pixels degradation at the bottom layer of UNet. A

residual block is added before every dilated convo-
lution layer to add features from the previous layer.
Thus, spatial consistency can be preserved while
accuracy can be improved simultaneously.

2. Second, to effectively demonstrate our proposed
method, we performed data augmentation to
increase the training samples to solve the overfitting
and class imbalance problems.

3. Lastly, output from each expanding path is added
pixel-wise to improve the training response.

2 | METHODS

The proposed workflow comprises a number of steps
from raw cine MR images to the final segmenta-
tion result, as shown in Figure 1. In this section, we
will explain the two main steps: (i) preliminary data
preparation, including preprocessing, cropping, normal-
izing, and data-augmentation. (ii) The segmentation
network architecture consists of a base UNet archi-
tecture, dilated residual convolution, hyper-parameters
tuning, and inference.

We designed a network that automatically segments
the RV, MYO, and LV from raw input images composed
of 3D volumes having dimensions L x W x H. The Raw
MR image having volume Xis generated by stacking N-
2D short-axis slices. A set of 3D label maps of size L
x W x H are provided. These maps contain Black, RV,
MYO, and LV (i.e., black = 0,RV = 1, MYO = 2, LV =
3). Based on the input image X, we extracted short-axis
slices beginning at the mitral valves and ending at the
apex of the left ventricle.

2.1 | Data pre-processing

The train and test sets of cine-MRI show significant
variations in spatial dimensions W x H and the range
of the intensity distribution. We subsequently designed
a pre-processing stage in which the MRI data is
pre-processed in two steps:

1. The ACDC dataset has a voxel spacing issue. Due
to the inability of CNNs to interpret voxel spacing,
we preprocess the ACDC dataset by resampling all
images to the same voxel spacing of 1.52x1.52x6.35
mm. Generally, the patch size that can be processed
is relatively large. Therefore, the voxel spacing, which
directly affects the overall voxel size of the images,
also affects the amount of contextual information
that the CNNs can extract from the image patches.
Furthermore, if the voxel spacing is increased sub-
stantially, the image size is reduced to the point
where the details are lost. It is imperative to ensure
that the trade-off between the amount of contextual
information contained in the network patch size and
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CMRI3D
Test-split

Cropping

FIGURE 1

the amount of detail retained in the image data is
optimized for optimum performance. Therefore, we
resample all images to a median value of 256x256
pixels for training data.

2. MR images were obtained for the ACDC dataset
using multi-slice cine MRI. This procedure involves
extracting each patient's 2D-MRI slices and their
associated annotations. We performed normalization
slice by slice for each time frame.

Xij _Xmin

= (1)
Xmax - Xmin

Xi’j(norm)
where X;; denotes the pixel intensity. The slices Xyn
and X5 represent the minimum and maximum pixel
intensities, respectively.

2.2 | Data augmentation

Data augmentation is used when there are insuffi-
cient training images to train the model. It is of even
greater significance when working with medical images,
particularly for segmentation tasks. Accurately anno-
tating ROI requires expert knowledge and is also
time-consuming. Even when the same expert annotates
the ROIs twice, there are still ambiguities. Due to the lim-
ited training data, the model cannot learn the desired
invariance and robustness features, which leads to over-
fitting. Therefore, we applied various data augmentation
techniques to the initial phases of model design and
training.3® A wide range of basic image transformation

Segmentation Network

Dilated residual
UNet

5-fold cross
validation-split

Hyperparameters <
tuning

Train set

Normalization Segmentation

Test set

Segmentation workflow from raw cine-magnetic resonance imaging data to segmentation.

FIGURE 2 Augmented images of training dataset. Original (top
left), intensities (top right), cropping (bottom left), and rotation (bottom
right).

TABLE 1 Data augmentation parameters during training
Parameters Values Probability (%)
Rotation [0, 7] 50

Scaling [0.98, 1.02] 50

Flipping [-0.17, 0.17] 50

Deformation a=230, c=4.0 30

techniques, including random rotations, random elastic
deformations, scaling, flipping, and gamma correction,
are frequently applied to increase the number of training
samples. When applied to the original training images,
they effectively generate several views of the same
image, as shown in Figure 2. The detailed parameters
for data augmentations are given in Table 1.
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FIGURE 3

Proposed fully automated segmentation pipeline. Dilated residual network is used to recover spatial and temporal information at

bottleneck of UNet. The predicted output represented as: (right ventricle (red), myocardium (green), and left ventricle (blue)).

2.3 | Segmentation network

We developed a fully automated segmentation pipeline
using a well-known encoder-decoder module, called
UNet* as base network to segment the RV, MYO, and
LV. We proposed a new and lightweight DRN for car-
diac segmentation to automate the entire process at full
resolution.

Convolution is a powerful operation that extracts fea-
tures from images automatically by sliding the kernel
over the input image. An important characteristic of con-
volution is that it is translationally unified, meaning that
the output remains constant despite a minor shift in
the input image. UNet based encoder-decoder method
incorporates convolutional layers to extract more high-
level semantic features. The convolutional layers output
is down-sampled using max-pooling and then restored
to the original size using deconvolution. As a result of the
pooling operation, the translational unified feature may
no longer hold, making the network delicate to minor
changes in the input image.®°.

We followed the encoder-decoder approach through-
out the segmentation process, from the input image
to the final output. The contracting path is constructed
using a series of five encoding blocks; each block con-
sists of two convolutional layers with a 3x3 kernel and

a 2x2 max-pooling operation with a stride of 2. Initially,
32 convolutional filters are selected. After every max-
pooling operation, the filters are doubled, resulting 320
filters in the bottleneck layer of UNet. Similarly, the spa-
tial dimensions of the feature maps are reduced by
a factor of 2 through down-sampling operation. Recti-
fied linear unit (ReLU) is replaced with leaky RelLU, and
instance normalization®” is employed rather than batch
normalization (BN).38.

We combine the encoding and decoding path at the
bottleneck of UNet through a DRN, which captures
the global context and restores the spatial and tempo-
ral information without affecting the resolution of the
segmentation map. Furthermore, it effectively adjusts
the convolution layer's depth without degrading the
network. The receptive field is enlarged in the DRN
block by employing dilated convolutions with different
dilation rates (d = 1, 3, and 5). The previously generated
features are then concatenated with the current fea-
tures through residual connection. A dropout operation
is performed to prevent overfitting with a dropout rate
of 0.5 after every 3x3 convolution in the DRN block.
Thus, the DRN captures contextual image information,
high spatial resolution, and multi-textured features.
The process for the decoding path is similar to that of
the encoding path; however, the order of operations is
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FIGURE 4 Dilated residual block

| I | |
1 Dilated Convolution 3x 3 |} Dilated Convolution 3x3 || Dilated Convolution 3x 3 |

(d=1) " (d=3) " (d=5) .
FIGURE 5 Dilated convolution. On the left dilated rate d is 1,

middle d is 3, and on the right d is 5. The convolution filter is 3x3 with
same number of parameters.

reversed. The deconvolution operation is used during
each decoding block, and the 3x3 kernel operation is
employed in both convolution layers. The deconvolu-
tion gradually increases the spatial dimensions and
reduces the feature maps by 2. UNet architecture offers
the advantage of reusing encoded feature maps from
encoding blocks to their corresponding levels in decod-
ing blocks where the spatial dimensions match. This can

be achieved through channel-specific concatenation.

A 1x1 kernel projection operation is used at the final
level of the decoding path to align the output channel

dimension to the segmented classes (RV, MYO, and LV).

Finally, we aggregated all expanding path level outputs
and performed pixel-wise additions via up-sampling
with appropriate projections to enhance the training
response. The proposed network is shown in Figure 3.

2.4 | Dilated residual convolution

Our main idea is to preserve spatial and temporal
information at bottleneck of UNet for RV, MYO, and
LV cardiac segmentation. Though progressive down-
sampling has been very effective at classifying objects;
however, the loss of spatial information may have
adverse effects on segmentation and can affect other
tasks that require spatially detailed image features.
Typically, natural images contain many objects whose
identities and relative positions are significant for under-
standing the scene. Additionally, segmentation becomes
more difficult when an important object is not spa-
tially prominent, for example, when the required object
(class) is small compared to the background. Conse-
quently, the background response may suppress the
features of object (class). If the features of the targeted
object are lost during down-sampling, it is not easy to
recover during training. However, if we maintain high
spatial and temporal information throughout the net-
work and provide output features that densely cover the
input features, backpropagation can learn important fea-
tures from smaller and less salient objects. Therefore,
we construct the network with a large receiving field,
which can extract more spatial information to predict
small and dense image features. The discrete dilated
convolution®? as follows:

G(p)= D, F(s)wk(t) ¥)

S+lt=p

where, £ G:7? - R are input and output discrete
functions. Let Qg =[-d,d]?nZ? and k: Q4 — R are
discrete kernel size of (2d + 1)? and % is dilated
convolution.

We used three dilated convolution with dilated rate
(d=1,3,and 5),as shown in Figure 5. Thus, every convo-
lutional kernel (2d + 1)? having dilation rate d for which
the size of receptive field is proportional to d. Increasing
the depth of a network will result in significant degrada-
tion of performance and training accuracy. To address
these issues, we introduce residual blocks, due to the
fact that residual mapping is easy to learn than origi-
nal mapping. Through residual learning, deep networks
are trained to improve their accuracy for tasks including

TABLE 2 Training parameters of five-folds cross-validation

Folds 1 2 3 4 5 Average
Training accuracy 0.997 0.998 0.997 0.999 0.999 0.998
Validation accuracy 0.973 0.976 0.961 0.932 0.962 0.961
Training loss 0.035 0.035 0.035 0.035 0.036 0.035
Validation loss 0.086 0.087 0.087 0.086 0.093 0.088
DSC RV 0.964 0.967 0.967 0.968 0.965 0.966
DSC MYO 0.939 0.942 0.938 0.939 0.931 0.938
DSC LV 0.918 0.911 0.914 0.913 0.910 0.913
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FIGURE 6 Mean training and validation loss of five-folds.

TABLE 3 The Biasuand limits agreements of cardiac clinical
and functional indices

Upper Lower
Indices Bias limit limit
LVESV(ml) 2.08 23.61 -19.44
LVEDV(ml) 0.57 20.07 -18.93
RVESV(ml) -1.81 13.72 -17.34
RVEDV(ml) -3.46 14.43 -21.35
EFLV(ml) -0.93 5.05 -6.92
EFRV(ml) 0.18 4.93 —4.56
EDMYO(g) 1.69 16.95 -13.56
ESMYO (g) 0.78 14.05 -12.49

image classification and object detection. Medical image
segmentation with a UNet like structure that learns
residual maps converges much faster and consistently
performs well.

The proposed method only employs five convolution
layer blocks to extract the features. In complex medical
image analysis tasks, such as multiclass image segmen-
tation, the conventional framework may not be suitable.
Although UNet can easily distinguish between the three
classes (RV, MYO, and LV), it has a limited ability to dis-
tinguish between small features; the apex slice during
the cardiac cycle is particularly challenging. Therefore,
it is necessary to build deeper network with more lay-
ers, particularly for the encoder block. However, when
deeper networks converge, a problem will be revealed:
as network depth increases, accuracy gets very high
and then decrease rapidly. Using skip connection and
residual learning, ResNet*’ overcomes the degrada-

tion of the network and avoids estimating a large
number of parameters generated by the convolutional
layer.

We developed a DRN to expand the receptive field
better, attain a promising result, and refrain from image
degradation at the bottleneck of UNet. Each pixel value
in the output of a convolutional network only depends
on one specific region of the input. Intuitively, a larger
region is capable of capturing more contextual informa-
tion. To ensure that no essential features are omitted,
CNNs must have a larger receptive field. The dilated
convolutional layers are based on regular convolution
with dilation factors d = 1, 3, and 5. We choose 1x 1 ker-
nel for the convolutional layer and 3x3 kernel for dilated
convolution as shown in Figure 4.

2

Mz=

y;(m, n) = x(m+dxi,n+dxjwiij) (3)

J

I
-
I
-

where y; (m,n) represents the dilated convolution of
the input x;;(m,n) and having a filter of length M and
width N. When d = 1, the dilated convolution becomes
a standard convolution. In dilated convolution, sparse
kernels are used to extend the receptive field without
increasing the additional parameters or causing the net-
work to become more complex. Adding more convolution
layers can increase the receptive fields but introduce
more operations. Nevertheless, dilated convolution is
achieved by extending small filter of size fx fto (f— 1) (s
— 1) with dilated stride s. For example, the normal con-
volution gives a receptive field of 3 x 3, and two dilated
convolutions give receptive fields of 5 x 5 and 7 x 7,
respectively.

3 | TRAINING AND POST PROCESSING

3.1 | Dataset

ACDC?® contains cine-MRI images of 150 patients
acquired by two different magnetic strengths of MR
scanners (1.5 T and 3.0 T) at the University Hospital
of Dijon. Each time series contains 28—40 individual 3D
volumes that partially or entirely cover the cardiac cycle.
A series of short-axis slices cover the whole LV from
base to apex with a slice thickness of 5—-8 mm, inter-
slice gap of 5-10 mm, and spatial resolution varies from
1.37 to 1.68 mm.?/pixel. Due to varied breath-hold posi-
tions during slice stack acquisition, certain images have
significant slice misalignment. Clinical experts manu-
ally segmented the ROlIs, including the RV cavity, LV
myocardium, and LV cavity, during end-diastolic (ED)
and end-systolic (ES) phases. The dataset is evenly dis-
tributed between four groups of pathologies and one
group of healthy patients. These include patients with
hypertrophic cardiomyopathy (HCM), abnormal right
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TABLE 4 Quantitative ACDC test set results comparison of our model and popular models in term of dice coefficient (DC) and hausdorff

distance (HD)

LV cavit RV cavity MYO

DC (%) HD (mm) DC (%) HD (mm) DC (%) HD (mm)
Method ED ES ED ES ED ES ED ES ED ES ED ES
Simantiris et al.*” 0.967  0.928 6.366 7573 0936 0.889 13.289 14.367 0.891  0.904 8.264 9.575
Isensee et al 2 0.967  0.928 5.476 6.921 0.951 0.904 8.205 11.655 0.904 0.923 7.014 7.325
Zotti et al*? 0.964 0.912 6.180 8.386 0.934 0.885 11.052 12.650 0.886  0.902 9.586 9.291
Painchaud et al*® 0.961  0.911 6.152 8.278 0936 0.884 13.718 13.323 0.881  0.897 8.651 9.598
Khened et al 3 0.964  0.917 8.129 8.968 0.935 0.879 13.994 13.930 0.889  0.898 9.841 12.582
Christian et al2* 0.963  0.911 6.526 9170 0.932 0.883 12.670 14.691 0.892  0.901 8.703 10.637
Baldeon et al *° 0.958  0.903 5.592 8.644 0936 0.884 10.183 12.234 0.873  0.895 8.197 8.318
Yang et al # 0.938 0.900 11.471 10.33 0.872  0.831 19.195 19.020 0.820 0.862 12.499 11.872
DRN (proposed in 0.968  0.930 6.310 7420 0.953 0.895 8.139 12.050 0.902 0.913 7.190 7.310

this paper)

ventricles (ARV), dilated cardiomyopathy (DCM), or with
myocardial infarction (MINF), as well as healthy individ-
uals (NOR). Additionally, height and weight are provided
for each patient. The dataset consists of 100 patients
for training and 50 patients for testing. Segmentation
and classification are performed only on the 100 training
cases.

3.2 | Evaluation metrices

The objective of segmentation is to detect the tar-
get object and draw a contour around it. Automated
segmentation contour C,, (predicted) is compared with
corresponding label contour C,4 (ground truth) to mea-
sure the accuracy of proposed method. Furthermore,
pixels surrounded by the contours are referred as A,
and Ag.

1. Dice similarity coefficient (DSC): The ratio between
the predicted contour and ground truth contour rep-
resents the DSC score, which is typically expressed
in percentage between 0 and 1. High dice values
indicate a good match.

2|A, N Ag]

Dice = ———
[Apl + 1Agl

(4)

2. Hausdroff distance (HD). HD compares the symmet-
rical distance between predicted and actual contour
and provides a spatial resolution of cine-MRI. The
low value of HD distance is evidence of a good
segmentation match.

HD(C;, C4) = max <r,,gg:< (pgég d(u)) , max <¥2é'2 d(u)))

(5)

3.3 | Loss function

There is a significant class imbalance in medical images
between ROIs and the background. In order to address
this problem, different loss functions have been tested,
including dice loss and weighted cross-entropy loss.
To train our model, we used a dual loss function that
incorporated dice loss and cross-entropy loss.

The cross-entropy loss quantifies cumulative error
across all pixels by calculating the probability of an error
between the predicted output and ground truth label
pixel-wise. Let W = (w4, wy, ws,...w,) are a set of learn-
able weights, where w,, is the weight matrix of ny, layer,
and p(Y;|X;, W)denotes the probability of a pixel X;. The
cross-entropy loss is defined as follows:

C

3 ~
Loe == . logp(Yj|X;, W) = " Y(c.x)log Y(c, x) (6)
c=0 c=0

where C denotes the total number of classes, Y is the
targeted label, Y~is the softmax score of predicted class.

3.4 | Training

We trained our model on Nvidia RTX 3090 (24GB).
The architecture was implemented using PyTorch 1.6
framework. Initially, the main aim was to reduce the
total loss using Equation (8). All hyper-parameters were
reconfigured, includes Adam.*' optimizer with a learn-
ing rate of 3 x 10~%, dropout of 0.2, and batch size
of 8. The 2D MR images were resized to 256x256
dimensions. The proposed model was trained using a
five-fold cross-validation approach to obtain and eval-
uate the performance of the training set. During the
cross-validation process, we ensured that the ED and
ES images of a patient were equally distributed. We then
randomly divided the pre-processed training data into
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FIGURE 7
cycle for Basal, Middle, and Apex slices

five-folds, ensuring that each fold contained data from
all five groups of pathologies. Each fold of the training
data was augmented during the training. The validation
data remained unseen during the training stage.

The model was trained for 500 epochs, with 250
iterations per epoch. The batches were created by ran-
domly selecting cases from the training split. In order to
resample the patches, we cropped random slices from
the training images and evaluated the network after
each epoch on validation set. The network is trained
using a multiclass variant of dice loss as described
in Equation (7). After each epoch, the learning rate Ir
was recalculated, as from Equation (9). Finally, the best
model was selected for evaluating the test set to ensure
the validation of RV, MYO, and LV classes that achieved
a top DSC. Table 2 illustrates the training parameters of
our proposed model for five-folds cross-validation. The
network provides consistent and stable performance
across all folds.

2 ik UikVik + €
Lpc=1-—= (7)
|C| CEZC Zik Uje + Eik Vik + €

Where u and v are the one-hot encoded vector of
softmax output and ground truth, respectively. Where
c € Cis class identifier (C = 0; 1; 2; 3) background and
three classes, that is, RV, MYO, and LV for ACDC dataset
and ¢ is the small number (constant) for network stability.

Apex

Segmentation results on ACDC test dataset. The predictions are shown on End-diastole (ED) and End-systole (ES) cardiac

Ltotar = Lce + Lgc (8)

0.9
currentepoch
) ®©

Ir = initial_learning_rate( 1 — —————
r = Iniual_learning_ra e< totalepochs

4 | EXPERIMENTS AND RESULTS

We used the trained weights for the associated folds
to calculate the DSC score directly on the validation
dataset for RV, MYO, and LV on both cardiac cycle,
ED, and ES. Thus, we are able to monitor how each
parameter, whether added or changed, affected our DSC
score during network training. The mean training and
validation loss are shown in Figure 6.

Table 4 summarizes the results of our proposed
model on ACDC test dataset. For the LV cavity, the high-
est DSC score was 0.968 and 0.930 on ED and ES
phases, respectively. When compared to the previous
models, we have seen a significant improvement dur-
ing both cardiac phases. Similarly, for the RV cavity, our
model achieved the highest DSC score of 0.953 on
ED, but for the ES phase, we achieved the second-best
score of 0.895. Finally,for MYO we achieved the second-
highest DSC score of 0.902 and 0.913 on ED and ES,
respectively.

The Hausdorff distance (HD) is the second evaluation
metric we utilize in our study to assess the effectiveness
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FIGURE 8 Segmentation results on ACDC validation set for End-Diastole (ED) and End-Systole (ES) phase.

of our algorithm. HD identifies the contour distance
between the prediction and the ground truth segmenta-
tion. Lower values indicate better performance. For the
LV cavity on both the ED and ES phases, we achieved
HD scores of 6.310 and 7.420 mm, respectively. Like-
wise, for the RV cavity, we achieved the best HD score
of 8.139 mm on ED, and the second-best HD score of
7.420 mm on ES. Similarly, for MYO, ES score of 7.310
mm remains the best, while the ED score of 7.190 mm
is the second-best score.

Finally,we analyze and compare our results with those
of fully automated and semi-automated methods that
appear on the ACDC challenge leaderboard. Isensee
et al?® used 3D UNet architecture. Khened et al >3 work
on densely connected fully convolutional network (FCN)
by not utilizing the skip connections that are used in the
UNet architecture. Zotti et al.*? used a multi-resolution
GridNet architecture, which is an extension of the UNet
architecture. Painchaud et al*® proposed an adver-
sarial variational auto-encoder (aVAE) for anatomically
plausible segmentation.

The test set of ACDC includes 50 patients, each with
ED and ES frames, a total of 100 images (Figure 7),
illustrates the test set results along with our model pre-
dictions. However, there are no available ground truth
masks for comparison. The predicted results demon-
strate a high level of segmentation accuracy for the
basal, Middle, and Apex slices during the ED and ES
cardiac cycles. Similarly, Figure 8 illustrates the results
of our model on the validation set. Visual analyses show

that the most challenging part was apex slice due to
the small size of the cardiac anatomical structure in that
region.

Due to the partial volume effect, the RV and aorta
are visible simultaneously on the basal slice. There is
no clear distinction between the RV and the pulmonary
artery. However, only one or two slices have a median
HD greater than 10 mm, while the rest, especially the LV
and Myo, have a median HD less than 8 mm.

We also identify and calculated the endocardium
and epicardium of the LV and RV. Several clinical
and functional indices are derived from these seg-
mentation maps, including left ventricular end-systolic
volume (LVESV), left ventricular end-diastolic volume
(LVEDV), right ventricular end-systolic volume (RVESV),
right ventricular end-diastolic volume (RVEDV), ejec-
tion fraction left ventricle (EFLV), ejection fraction right
ventricle (EFRV), end-systolic MYO mass (ESMYO),
and end-diastolic MYO mass (EDMYO). Moreover, we
compared manual assessment with automatic predic-
tions of heart clinical and functional indices. Bland-
Altman** plots are used to assess the degree of
agreement between the manual segmentation values
and the predicted segmentation results as shown in
Figure 9.

The Bias pand upper and lower limits are: [2.08 ml,
(23.61 ml, —19.44 ml)], [0.56 ml, (20.07 ml, —18.93
ml)], [-1.81 ml, (13.71 ml, —17.33 ml)], [-3.46 ml,
(14.42 ml, —21.35 ml)], [-0.93 ml, (5.05 ml, —6.91 ml)],
[0.18 ml, (4.92 ml, —4.56 ml)], [1.69 g, (16.94 g,

95UB017 SUOLULLOD AI8ID 3ot (dde ay) Aq peuenob a1e sapie O 88N 0 ol o} A%iqT 8UIUO AB[IM UO (SUONIPUCD-PUR-SLLBIWI0D" AB| 1M Afe.q]1Bu|UO//:StY) SUONIPUOD pUe swiie | 81 88S * [£202/0T/5Z] Uo AriqiTauliuo A8|im *ABojouyde | pesueApy JO SSIMIisU| Uayzusys Aq 80T9T dw/Z00T 0T/I0p/wod" A 1M Ale.q1jpul uo widee//sdny woay pepeo|umoa ‘v ‘€202 ‘60ZvELYE



CARDIAC VENTRICULAR SEGMENTATION

27 | \EDICAL PHYSICS

End-Systolic Vol (LV)

40
o ©  +1.96SD: 23.61 mi
20 1
E BIAS: 2.08 mi
= 4 -
S 3
£ 5
] o
-1.96SD: -19.44 ml
20 -
40 . . A L
0 50 100 150 200 250
Average[ml]
End-Systolic Vol (RV)
40
o
20 1
%1.968D: 13.72 ml
.E © BIAS: -1.81 m/
= 0
o
0 o
fim|
© -1.96SD: 17,34 mi
20 [
40 . . .
0 50 100 150 200
Average [ml]
Ejection Fraction Vol (LV)
10
s +1.96SD: 5.05 ml
[0}
g & [}
5 ° -
e
] [}
sh
~10 . . .
0 20 40 60 80
Average[ml]
End-Systolic Mass (Myo)
40
30 F
20 +1.96SD: 16.95 g
® o
S0F
5 ’
] BIAS: 1.69 g
0
10 " 1.96SD: -13.56 g
20|
. . . .
50 100 150 200 250 300

Averagel[g]

End-Diastolic Vol (LV)

30
20 _ +1.96SD: 20.07 m/
8
3
10 |
E‘ BIAS: 0.57 ml
5 0
e
S
i}
S0k
© -1.96SD: -18.93 m/
20 F
30 . A . A
0 50 100 150 200 250
Average[ml]
End-Diastolic Vol (RV)
40
20 - Q,
- +1.96SD: 14.43 m/
E
5 0
g BIAS: -3.46 ml
L
20 8° o -1.96SD: -21.35 m/
[6]
40 . A . .
0 50 100 150 200 250
Average[ml]
Ejection Fraction Vol (RV)
10
5 +1.96SD: 4.93 m/
o« °©
= ST %o
£
g ° S
£
i}
°
5 S
10 . . .
0 20 40 60 80
Average[ml]
» End-Diastolic Mass (Myo)
a +1.96SD: 14.05 g
o
o (o]
10 |
=
— BIAS: 0.78 g
o 0
£
L
O"
10 |
-1.96SD: -12.49 g
20 . . . .
50 100 150 200 250 300

Averagelg]

FIGURE 9 Bland-Altman plots for bias and limits agreements (Manual segmentation vs. Automatic prediction) results.

—13.55 g)] and [0.77 g, (14.04 g, —12.48 g)] for LVESV,
LVEDC, RVESV, RVEDC, EFLV, EFRV, ESMYO, and
EDMYO, respectively. From these results, our auto-
mated cardiac ventricle segmentation framework show
good limits of agreement with expert level of man-
ual analysis. The clinical indices are mentioned in
Table 3.

5 | DISCUSSION

This study aims to design a fully automated segmenta-
tion network for cardiac ventricle segmentation. There
is a good overlap between our proposed RV, MYO, and
LV segmentation methods and the reference frame. The
effectiveness of our model was compared to that of
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other deep learning approaches with the same objec-
tive but different approaches. We find that our model
outperforms many other models in terms of DSC and
HD scores. Nevertheless, compared to Isensee et al.2®
we achieved very closed results on DC and HD, respec-
tively. The reason behind this is that the baseline network
is UNet for both the studies; however, we utilized the
DRN block in our model to capture the minor details
and recover the spatial and temporal information, which
enhanced the overall performance, and improved the
segmentation results. We selected pre-processed input
patches based on the lowest possible size that con-
tained RV, MYO, and LV regions in the ACDC dataset.
This approach has two main advantages: (i) minimizes
the computation time required for training and inference,
and (ii) efficiently addresses the problem of class imbal-
ance by excluding unnecessary tissues or background
pixels. Most segmentation methods do not explicitly
consider spatial and temporal resolution consistency.
Specifically, they fail to correctly segment the apex slice
due to difficult regions during the cardiac cycle ES
and ED, respectively. Our method is significantly more
robust than others on these slices. There are 150 differ-
ent patient data samples, of which 100 were used for
training and 50 for testing. Therefore, the algorithm is
automatic and can be applied to any new and diverse
cardiac CMRI dataset.

Recent research into cardiac motion tracking and
image synthesis requires reconstructing a 3D mesh
model based on segmentation as a primary component.
Without spatial and temporal resolution consistency in
the mesh generation, the generated 3D model would
be challenging for reconstruction. Moreover, our method
is more effective at measuring HD than many other
state-of-the-art methods, making it an excellent tool for
future studies analyzing cardiac motion. Generally, the
smaller the Hausdorff distance between the output and
ground-truth contour, the more precisely the path of cor-
responding structures (e.g., RVC, MYO, LVC) can be
captured, and the better motion can be tracked.

6 | CONCLUSION

We designed a dilated residual UNet (DRN) for car-
diac ventricular segmentation for short-axis CMRI. The
proposed method incorporates two major steps in the
original UNet, architecture. Firstly, we replaced the bot-
tom of UNet with dilated convolution and added the
residual block before every dilated convolution layer
to add the features of the previous layer. As a result,
spatial and temporal information is captured by expand-
ing the receptive field without degrading the image
main features in the bottleneck of UNet. Secondly, we
aggregated all the expanding paths output at a lower
resolution and added pixel-wise to the highest output
resolution of the decoding blocks. We also used vari-

ous data augmentation techniques during the training
to overcome the class imbalance and overfitting prob-
lem. The DRN shows significantly improved results on
validation and test set of ACDC dataset. Also, we used
a multi-loss function for our network to globalize the
heart features during segmentation and improve accu-
racy. These changes make our approach to predict less
false positives and false negatives. We achieved an
overall DSC of 0.92 + 0.02 and a mean Hausdorff
distance of 8.06 + 0.05 mm. Our method is highly accu-
rate and quick, taking 0.28 s on average to process 2D
MR images. Also, the network was designed to work on
predictions of individual MR images to segment the ven-
tricular region, for which our model outperforms many
state-of-the-art methods. This gives us the first step
toward the ultimate goal of designing a completely auto-
mated network with an error rate lower than manual
segmentation.

In the future, we will explore using our automated seg-
mentation pipeline to integrate it with augmented reality
based applications to provide a real-time immersive
views of cardiac ventricles.
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